“转圈”中的数学 ----“探索多边形外角和”教学案例及点评执教:荆门市京山实验中学/程诗春点评:荆门市教研室/罗昭旭摘自:《荆门教育信息网》我们的数学教材、数学教师乃至数学教学总是那么一幅正儿八经的数学面孔:抽象化、符号化、程式化,使得原本生气勃勃的青少年对数学望而生畏.但实际情况是,实践活动产生了数学,社会生活充满了数学,我们何不将数学的“真实”(背景、情境、发生过程等)再现给孩子们!本此目的,在执教多边形外角和时,作了如下尝试. 课例: 首先,由多边形的内角和引出课题:多边形的外角和。结合图形(如下图所示),老师和学生共同明确了多边形的外角及外角和的意义后,提出问题:请你想一想,下列图中三角形、四边形和五边形的外角和m3、m4及m5,哪个大?然后分组计算讨论. T:同学们有什么发现?S1:它们的外角和总是360°,与边数无关.T:那为什么多边形的内角和与边数有关,而多边形的外角和总是一个周角呢?你不感觉到意外吗?(激发求知欲望)S2:可以用内角和(n-2).180°来说明它的正确性.(具体推导略)T:不错.哪位同学能有更确切的见解?比方说你们由周角会想到什么?(点击思维火花)S3:每个顶点处转动一个角度,正好联成一个周角.T:S3的见解太妙了,转了一圈就是一个周角,360°就是转了一圈.那么同学们会转圈吗?(刺激活动兴趣)S:(齐答)会!我们每天早锻炼跑步就是在操场上转圈.T:(如图)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步.请思考: 问题(1):小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图上标出.问题(2):他每跑完一圈,身体转过的角度之和是多少?S1:小明每从一条街道转到下一条街道时,身体转过的角分别是∠1、∠2、∠3、∠4、∠5.S2:我想小明在点A处第1次转身前后视线夹角为∠1,同样在点B处第2次转身可得∠2,在C处第3次转身得∠3,在点D处第4次转身得∠4,点E处第5次转身得∠5后,他与他原来方向一致,刚好转了一圈,由此我想这五个外角的和是3600.[学生对问题(1)、(1)的解决充分展示了他们思考的全程,同时也充分说明给学生足够的时间和空间思考,他们会结合自己的生活经验去认识数学,形成数学结论,知识的形成过程与学生的能力同成长.]S3:沿各边行走,应该说他的视线恰好扫过了一圈.S4:我在某一顶点沿各边方向转动一圈,恰好形成一个周角.T:好极了,S4回答得真精彩!作为一名数学教师,今天我总算明白了为什么多边形的外角和总是360°.周而复始,原来如此!现在我们把转圈的过程搬到黑板上来.(教师拿来出圆规,使一边与六边形的一边重合,另一边沿着各边方向旋转……,直至最终重合在一起,形成周角)此时所旋转的各角与各外角是什么关系?(自然过渡,恰到好处的抽象.)S5:所旋转的各角与各外角是同位角. S6:这相当于在一个顶点处分别作各边的平行线而并未改变外角的大小.T:Very good!一语道破了天机!可见数学原本是实际生活的产物.(从具体到抽象,又从抽象回到具体实际,再现了“数学----生活”的主题.)T:好,非常好!我们已经实实在在地“看”到了多边形的外角和为周角这一有趣的结论.这里不妨再回头比较一下它和多边形内角和的联系与区别.(照应前面S2说过的话)S7:根据内角与外角互为邻补角,可以由内角和推导出外角和.S8:多边形内角和随边数增加而增加,而外角和始终为周角.S9:(举手)老师,也可以由外角和推导内角和.T:太好了!其实在前面探讨多边形内角和时,我们是以三角形内角和为基础的,而用外角和来推导多边形的内角和更为方便.请大家填写下列表格,作为课外的探讨.多边形顶点的个数内外角总和内角和外角和333×180°180°360°445566……………nn 反思: 上完这节课,我有一种如愿以偿的快慰.说实话,从事数学教学以来,我一直在努力,在追求,在探索,但始终未能跳出“灌输”的窠臼.应该说也是在没完没了的“转圈”,就像多边形外角和为360°,不知教了多少遍,但每次都是轻松地带过,而未能真真切切地“看”到这个“圈”.直到今天,在这个“转圈”的过程中,教师和学生们得到的不仅仅是一个周角,而是一种思想方法,一种全新的理念及其课程观. 点评: 传统的数学教学总是从定理到定理,用公式推公式,数学知识真实而生动的背景、情景及发生过程被掩盖得严严实实.比如多边形的外角和,我们总是用内角和一证了之,没有任何探究过程,更谈不上有学生的亲身体验.本节课打破惯例,在师生共同的“转圈”活动中观察、体验,让学生真正看到了多边形外角和是一个周角,再现了数学知识的真实背景及其本质内涵,学生当然不会把360°当作一个简单的数据去记忆了.它留给孩子们的不再是枯燥无味的数字和公式,而是鲜活又纯真的“梨子的滋味”,天经地义的结果和“原来如此”的感悟.
高中数学 立方根 教学设计 教案
时间:2022-12-07 11:02:52
作者:豆丁文库尔
字数:5697字
“转圈”中的数学 ----“探索多边形外角和”教学案例及点评执教:荆门市京山实验中学/程诗春点评:荆门市教研室/罗昭旭摘自:《荆门教育信息网》我们的数学教材、数学教师乃至数学教学总是那么一幅正儿八经的数学面孔:抽象化、符号化、程式化,使得原本生气勃勃的青少年对数学望而生畏.但实际情况是,实践活动产生了数学,社会生活充满了数学,我们何不将数学的“真实”(背景、情境、发生过程等)再现给孩子们!本此目的,在执教多边形外角和时,作了如下尝试. 课例: 首先,由多边形的内角和引出课题:多边形的外角和。结合图形(如下图所示),老师和学生共同明确了多边形的外角及外角和的意义后,提出问题:请你想一想,下列图中三角形、四边形和五边形的外角和m3、m4及m5,哪个大?然后分组计算讨论. T:同学们有什么发现?S1:它们的外角和总是360°,与边数无关.T:那为什么多边形的内角和与边数有关,而多边形的外角和总是一个周角呢?你不感觉到意外吗?(激发求知欲望)S2:可以用内角和(n-2).180°来说明它的正确性.(具体推导略)T:不错.哪位同学能有更确切的见解?比方说你们由周角会想到什么?(点击思维火花)S3:每个顶点处转动一个角度,正好联成一个周角.T:S3的见解太妙了,转了一圈就是一个周角,360°就是转了一圈.那么同学们会转圈吗?(刺激活动兴趣)S:(齐答)会!我们每天早锻炼跑步就是在操场上转圈.T:(如图)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步.请思考: 问题(1):小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图上标出.问题(2):他每跑完一圈,身体转过的角度之和是多少?S1:小明每从一条街道转到下一条街道时,身体转过的角分别是∠1、∠2、∠3、∠4、∠5.S2:我想小明在点A处第1次转身前后视线夹角为∠1,同样在点B处第2次转身可得∠2,在C处第3次转身得∠3,在点D处第4次转身得∠4,点E处第5次转身得∠5后,他与他原来方向一致,刚好转了一圈,由此我想这五个外角的和是3600.[学生对问题(1)、(1)的解决充分展示了他们思考的全程,同时也充分说明给学生足够的时间和空间思考,他们会结合自己的生活经验去认识数学,形成数学结论,知识的形成过程与学生的能力同成长.]S3:沿各边行走,应该说他的视线恰好扫过了一圈.S4:我在某一顶点沿各边方向转动一圈,恰好形成一个周角.T:好极了,S4回答得真精彩!作为一名数学教师,今天我总算明白了为什么多边形的外角和总是360°.周而复始,原来如此!现在我们把转圈的过程搬到黑板上来.(教师拿来出圆规,使一边与六边形的一边重合,另一边沿着各边方向旋转……,直至最终重合在一起,形成周角)此时所旋转的各角与各外角是什么关系?(自然过渡,恰到好处的抽象.)S5:所旋转的各角与各外角是同位角. S6:这相当于在一个顶点处分别作各边的平行线而并未改变外角的大小.T:Very good!一语道破了天机!可见数学原本是实际生活的产物.(从具体到抽象,又从抽象回到具体实际,再现了“数学----生活”的主题.)T:好,非常好!我们已经实实在在地“看”到了多边形的外角和为周角这一有趣的结论.这里不妨再回头比较一下它和多边形内角和的联系与区别.(照应前面S2说过的话)S7:根据内角与外角互为邻补角,可以由内角和推导出外角和.S8:多边形内角和随边数增加而增加,而外角和始终为周角.S9:(举手)老师,也可以由外角和推导内角和.T:太好了!其实在前面探讨多边形内角和时,我们是以三角形内角和为基础的,而用外角和来推导多边形的内角和更为方便.请大家填写下列表格,作为课外的探讨.多边形顶点的个数内外角总和内角和外角和333×180°180°360°445566……………nn 反思: 上完这节课,我有一种如愿以偿的快慰.说实话,从事数学教学以来,我一直在努力,在追求,在探索,但始终未能跳出“灌输”的窠臼.应该说也是在没完没了的“转圈”,就像多边形外角和为360°,不知教了多少遍,但每次都是轻松地带过,而未能真真切切地“看”到这个“圈”.直到今天,在这个“转圈”的过程中,教师和学生们得到的不仅仅是一个周角,而是一种思想方法,一种全新的理念及其课程观. 点评: 传统的数学教学总是从定理到定理,用公式推公式,数学知识真实而生动的背景、情景及发生过程被掩盖得严严实实.比如多边形的外角和,我们总是用内角和一证了之,没有任何探究过程,更谈不上有学生的亲身体验.本节课打破惯例,在师生共同的“转圈”活动中观察、体验,让学生真正看到了多边形外角和是一个周角,再现了数学知识的真实背景及其本质内涵,学生当然不会把360°当作一个简单的数据去记忆了.它留给孩子们的不再是枯燥无味的数字和公式,而是鲜活又纯真的“梨子的滋味”,天经地义的结果和“原来如此”的感悟.
上一篇:高中数学 新世纪数学七年级下教材分析 教案
下一篇:返回列表
最新文章
- 1高中数学 立方根 教学设计 教案
- 2高中数学 新世纪数学七年级下教材分析 教案
- 3高中数学 平方根(第一课时) 教学设计 教案
- 4高中数学 数学教案-直线的倾斜角和斜率 教案
- 5高中数学 一次函数的概念的应用 教案
- 6高中数学 数学教案-研究性课题与实习作业:线性规划的实际应用 教案
- 7高中数学 圆的标准方程 教案
- 8高中数学 “转圈”中的数学 教案
- 9高中数学 多边形内角和专题 教案
- 10高中数学 能追上小明吗 教案
- 11高中数学 第四章第七节有趣的七巧板 教案
- 12高中数学 不等式的证明(二) 教案
- 13高中数学 对话、建构、熏陶 教案
- 14高中数学 20以内进位加法的整理与复习 教案
- 15高中数学 用字母表示数 教案
- 16高中数学 “导”,要适时介入交流之中 教案
- 17高中数学 一个数乘以小数2 教案
- 18高中数学 二元一次方程与一次函数 教案
- 19高中数学 亲身体验主动感知 教案
- 20高中数学 引导思考.自主探究.激活思维 教案
猜你喜欢
- 高中数学 椭圆及其标准方程1 教案
- 高中数学 §1.6.1逻辑联结词(1) 教案
- 高中数学 “预设”与“生成”不是“你死我活” 教案
- 高中数学 简单的线性规划(二) 教案
- 高中数学 不等式的性质(三) 教案
- 高中数学 蚂蚁怎样走最近呢? 教案
- 高中数学 算术平均数与几何平均数--探究活动 教案
- 高中数学 列方程解应用题 教案
- 高中数学 圆心角、弧、弦、弦心距之间的关系(一) 教案
- 高中数学 数学教案-椭圆及其标准方程1 教案
- 高中数学 “函数的对称性与周期性的探究”课例分析 教案
- 高中数学 函数的图象(二) 教案
- 高中数学 不等式的性质1 教案
- 高中数学 秋天的果园 教案
- 高中数学 一节习题课的尝试 教案
- 高中数学 不等式的解法举例 教案
- 高中数学 《数学乐园》活动课教学设计与评析 教案
- 高中数学 已知三角函数值求角 教案
- 高中数学 第二章 映射与函数 教案
- 高中数学 两条直线的位置关系 教案