教学目标
(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规化问题的图解法;
(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;
(4)引发学生
学习
和使用
数学
知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.
教学建议
一、重点难点分析
学以致用,培养学生“用
数学
”的意识是本节的重要目的。
学习
线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的
教学重点
是:线性规划在实际生活中的应用。困难大多是如何把实际问题转化为
数学
问题(既
数学
建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的
教学难点
。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。
二、教法建议
(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率.
(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的
数学
模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务.
(3)确定研究课题,建议各小组以三个常见问题为主,或者根据本小组实际自拟课题.
(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全.学生研究活动的成果,可以用研究报告或
论文
的形式体现.一切以学生自己的自主探究活动为主,教师不能越俎代庖.
(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流.展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心.通过评估,可以使同学清楚地看到自己的优点与不足.通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升.
教学设计方案
教学目标
(1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;
(3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的 数学 思想,提高学生“建模”和解决实际问题的能力;
(4)结合教学内容,培养学生 学习 数学 的兴趣和“用 数学 ”的意识,激励学生勇于创新.
重点难点
理解二元一次不等式表示平面区域是 教学重点 。
如何扰实际问题转化为线性规划问题,并给出解答是 教学难点 。
教学步骤
(一)引入新课
我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?