数学教案-圆柱和圆锥的侧面展开图
第一课时
素质 教育 目标
(一)知识教学点
1.使学生了解圆柱的特征,了解圆柱的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆柱的侧面展开图是矩形.
2.使学生会计算圆柱的侧面积或全面积.
(二)能力训练点
1.通过圆柱形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;
2.通过圆柱侧面积的计算,培养学生正确、迅速的运算能力;
3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出 数学 模型的能
力.
(三)德育渗透点
1.通过圆柱的实物观察及有关概念的归纳向学生渗透“真知产生于实践”的观点;
2.通过应用圆柱展开图进行计算,解决实际问题,向学生渗透理论联系实际的观点;
3.通过圆柱侧面展开图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;
4.通过圆柱轴截面的教学,向学生渗透“抓主要矛盾、抓本质”的矛盾论的观点.
(四)美育渗透点
通过 学习 新知,使学生领略主体图形美与平面图形美的联系,提高学生对美的认识层次.
重点·难点·疑点及解决办法
1.重点:(1)圆柱的形成手段和圆柱的轴、母线、高等概念及其特征;
(2)会用展开图的面积公式计算圆柱的侧面积和全面积.
2.难点:对侧面积计算的理解.
3.疑点及解决方法:学生对圆柱侧面展开图的长为什么是底面圆的周长有疑虑,为此教学时用模型展开,加强直观性教学.
教学步骤
(一)明确目标
在 小学 ,大家已学过圆柱,在生活中我们也常常遇到圆柱形的物体,涉及到圆柱形物体的侧面积和全面积的计算问题如何计算呢?这就是今天“7.21圆柱的侧面展开图”要研究的内容。
(二)整体感知
圆柱是生产、生活实际中常遇到的几何体,它是怎样形成的,如何计算它的表面积?为了回答上述问题,首先在 小学 已具有直观感知的基础上,用矩形旋转、运动的观点给出圆柱体有关的一系列概念,然后利用圆柱的模型将它的侧面展开,使学生认识到圆柱的侧面展开图是一个矩形,并能将这矩形的长与宽跟圆柱的高(或母线)、底面圆半径找到相互转化的对应关系.最后应用对应关系和面积公式进行计算.
〔三〕 教学过程
(幻灯展示生活中常遇的圆柱形物体,如:油桶、铅笔、圆形柱子等),前面展示的物体都是圆柱.在 小学 ,大家已学过圆柱,哪位同学能说出圆柱有哪些特征?(安排举手的学生回答:圆柱的两个底面都是圆面,这两个圆相等,侧面是曲面.)
(教师演示模型并讲解):大家观察矩形 ABCD ,绕直线 AB 旋转一周得到的图形是什么?(安排中下生回答:圆柱).大家再观察,圆柱的上、下底是由矩形的哪些线段旋转而成的?(安排中下生回答:上底是以 A 为圆心, AD 旋转而成的,下底是以 B 为圆心, BC 旋转而成的.)上、下底面圆为什么相等?(安排中下生回答:因矩形对边相等,所以上、下底半径相等,所以上、下底面圆相等.)大家再观察,圆柱的侧面是矩形 ABCD 的哪条线段旋转而成的?(安排中下生回答:侧面由 DC 旋转而成的.)
矩形 ABCD 绕直线 AB 旋转一周,直线用叫做圆柱的轴, CD 叫做圆柱的母线.圆柱侧面上平行于轴的线段都叫做圆柱的母线.矩形的另一组对边 AD 、BC 是上、下底面的半径。
圆柱一个底面上任意一点到另一底面的垂线段叫做圆柱的高,哪位同学发现圆柱的母线与高有什么数量关系?(安排中下生回答:相等.)哪位同学发现圆柱上、下底面圆有什么位置关系?(安排中下生回答:平行) A 、B 是两底面的圆心,直线 AB 是轴.哪位同学能叙述圆柱的轴的这一条性质?(安排中等生回答:圆柱的轴通过上、下底面的圆心)哪位同学能按轴、母线、底面的顺序归纳有关圆柱的性质?(安排中上学生回答:圆柱的轴通过上、下底面的圆心,且垂直于上、下底,圆柱的母线平行于轴且长都相等,等于圆柱的高,圆柱的底面圆平行且相等.)
(教师边演示模型,边启发提问):现在我把圆柱的侧面沿它的一条母线剪开,展在一个平面上,观察这个侧面展开图是什么图形?(安排中下生回答,短形)这个圆柱展开图??矩形的两边分别是圆柱中的什么线段?(安排中下生回答:一边是圆柱的母线,一边是圆柱底面圆的周长).大家想想矩形面积公式是什么?哪位同学能归纳圆柱的面积公式?(安排中下生回答:底面圆周长×圆柱母线)大家知道圆柱的母线与高相等,所以圆柱的面积公式还可怎样表示?(安排中下生回答:)
幻灯展示[例1] 如图,把一个圆柱形木块沿它的轴剖开,得矩形 ABCD .已知 ,求这个圆柱形木块的表面积(精确到 ).
矩形的 AD 边是圆柱底面圆的什么?(安排中下生回答:直径.)题目中的哪句话暗示了 AD 是直径?(安排中上生回答:第一句,“把一个圆柱形木块沿它的轴剖开,得矩形 ABCD ”.因圆柱轴过底面圆的圆心,矩形过轴则意味 AD 过底面圆圆心,所以 AD 是圆柱底面圆直径.) cm是告诉了圆柱的什么线段等于30cm?(安排中下生回答:圆柱的高等于30cm)什么是圆柱的表面积?哪位同学知道?(安排中上生回答:圆柱侧面积与两底面圆面积的和.)同学们请完成这道应用题.(安排一中上生上黑板做题,其余在练习本做)
解: AD 是圆柱底面的直径, AB 是圆柱母线,设圆柱的表面积为 S ,则
答:这个圆柱形木块的表面积约为 .
幻灯展示[例2] 用一张面积为 的正方形硬纸片围成一个圆柱的侧面,求这个圆柱的底面直径(精确到0.1cm).
请同学们任拿一正方形纸片围围看.哪位同学发现正方形相邻两边,一边是圆柱的什么线段,另一边是圆柱底面圆的什么?(安排中下生回答:一边是母线,另一边是底面圆周长.)
此题要求的是底面圆直径,所以只要求出正方形的什么即可?(安排中下生回答:边长.)边长可求吗:(安排中下生回答:可求,因为已知中给了正方形的面积.)
请同学们完成此题.(安排一中等生上黑板完成,其余在练习本上完成)
解:设正方形边长为 x ,圆柱底面直径为 d .
则 ,依题意 (cm)
答:这个圆柱的底面的直径约为9.6cm.
(四)总结、扩展
本节课 学习 了圆柱的形成、圆柱的概念、圆柱的性质、圆柱的侧面展开图及其面积计算.
然后按总结顺序;依次提问学生,此过程应重点提问中下生.
布置作业
教材P.187练习1、2;P.192中2、3、4。
九、 板书设计
第二课时
素质 教育 目标
(一)知识 教育 点
1.使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形。
2.使学生会计算圆锥的侧面积或全面积。
(二)能力训练点
1.通过圆锥的形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;
2.通过圆锥的面积计算,培养学生正确迅速的运算能力;
3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出 数学 模型的能
力.
(三)德育渗透点
1.通过圆锥的实物观察及有关概念的归纳向学生渗透“实践出真知”的观念;
2.通过应用圆锥展示图的计算解决实际问题,向学生渗透理论联系实际的观点;
3.通过圆锥侧面展示图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;
4.通过圆锥轴截面的教学,向学生渗透“抓主要矛盾,抓本质”的矛盾论的观点.
(四)美育渗透点
通过 学习 新知,使学生进一步完整对几何美的认识,提高美育层次.
重点·难点·疑点及解决办法
1.重点:(1)圆锥的形成过程和圆锥的轴、母线、高等概念及其性质;
(2)会进行圆锥侧面展开图的计算,计算圆锥的表面积.
2.难点:准确进行圆锥有关数据与展开图有关数据的转化.
3.疑点及解决方法:由于学生空间想象能力较弱,对圆锥的侧面展开图是扇形,用扇形一定可以围成一个圆锥的侧面有疑惑,为此安排学生课前或课上或课下自己动手剪剪看或围围看,通过实践解决疑点.
教学步骤
(一)明确目标
在 小学 ,同学们除了 学习 圆柱之外还 学习 了一个几何体??圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算.这些圆锥形物体的表面积是怎样计算出来的?这就是本节课“7.21圆锥的侧面展开图”所要研究的内容.
(二)整体感如
和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步 学习 圆锥的有关计算,不仅对培养学生的空间观念有好处,而且能使学生体会到用平面几何知识可以解决立体图形的计算,为 学习 立体几何打基础.
圆锥的侧面展开图不仅用于圆锥表面积的计算,而且在生产中常用于画图下料上,因此圆锥侧面展开图是本课的重点.
本课首先在 小学 已具有圆锥直观感知的基础上,用直角三角形旋转运动的观点给出圆锥的一系列概念,然后利用圆锥的模型,把其侧面展开,使学生认识到圆锥的侧面展开图是一个扇形,并能将圆锥的有关元素与展开图扇形的有关元素进行相互间的转化,最后应用圆锥及其侧面展开图之间对应关系进行计算.
(三) 教学过程
[幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]前面屏幕上展示的物体都是什么几何体?[安排回忆起的学生回答:圆锥]在 小学 我们已学过圆锥,哪位同学能说出圆锥有哪些特征?安排举手的学生回答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高。
[教师边演示模型,边讲解]:大家观察Rt ,绕直线 SO 旋转一周得到的图形是什么?[安排中下生回答:圆锥.]大家观察圆锥的底面,它是Rt 的哪条边旋转而成的?[安排中下生回答: OA ]圆锥的侧面是Rt 的什么边旋转而得的?[安排中下生回答,斜边],因圆锥是Rt 绕直线 SO 旋转一周得到的,与圆柱相类似,直线 SO 应叫做圆锥的什么?[安排中下生回答:轴.]大家观察圆锥的轴 SO 应具有什么性质?[安排学生稍加讨论,举手发言:圆锥的轴过底面圆的圆心,且与底面圆垂直,轴上连接圆锥顶点与底面圆心的线段就是圆锥的高.]圆锥的侧面是Rt 的斜边绕直线 SO 旋转一周得到的,同圆柱相类似,斜边 SA 应叫做圆锥的什么?[安排中下生回答:母线.]给一圆锥,如何找到它的母线?[安排中上生回答:连结圆锥顶点与底面圆任意一点的线段都是母线.]圆锥的母线应具有什么性质?[安排中下生回答:圆锥的母线长都相等.]
[教师边演示模型,边启发提问]:现在我把这圆锥的侧面沿它的一条母线剪开,展在一个平面上,哪位同学发现这个展开图是什么图形?[安排中下生回答:扇形.]请同学们仔细观察:并回答:1.圆锥展示图??扇形的弧长 l 等于圆锥底面圆的什么?扇形的半径其实是圆锥的什么线段?[安排中下生回答:扇形的弧长是底面圆的周长,即 ,扇形的半径。就是圆锥的母线]由于 ,圆锥半径已知则展开图扇形的弧长已知,圆锥母线已知则展开图扇形的半径已知,因此展开图扇形的面积可求,而这个扇形的面积实质就是圆锥的侧面积,因此圆锥的侧面积也就可求.当然展开图扇形的圆心角也可求.
[教师边演示模型,边启发提问]:如图,现在将圆锥沿着它的轴剖开,哪位同学回答,经过轴的剖面是一个什么图形?[安排中下生回答:等腰三角形.]这个等腰三角形的腰与底分别是圆锥的什么?[安排中下生回答:腰是圆锥的母线,底是圆锥的直径.这个等腰三角形的高也就是圆锥的什么?[安排中下生回答:高].这个经过轴的剖面,我们称之谓“轴截面”,在轴截面里包含了有关圆锥的所有元素:轴、高、母线,底面圆半径.这个等腰三角形的顶角,我们称之谓“锥角”,大家不难发现圆锥的母线、高、底面圆半径及 锥角构成了一个直角三角形,它给定旋转一周得圆锥的那个直角三角形,当然给定半径、母线;圆锥侧面展开图??扇形的面积、圆心角可求、因此可以说有关圆锥的计算问题,其实质就是解这个直角三角形的问题.
幻灯展示例题:如图,圆锥形的烟囱帽的底面直径是80cm,母线长50cm,(1)计算这个展开图的圆心角及面积;(2)画出它的展开图.
要计算展开图的面积,哪位同学知道展开图扇形的弧长是圆锥底面圆的什么?[安排中下生回答:周长.[展开图形的半径是圆锥的什么?[安排中下生回答:母线.]
请同学们计算这个展开图的面积.[安排一中等生上黑板完成,其余学生在练习本上做.]
解:圆锥底面圆直径80cm,∴底面圆周长 cm,又母线长50cm ∴展开图扇形的半径50cm,弧长 cm。∴
哪位同学到前面计算一下这个扇形的圆心角?[安排一名中下生上前,其余在练习本上做]
解: 且 , ,∴ (度)。
同学讨论一下这个扇形怎样画?[安排一中上学生回答:首先画一个半径为50cm的圆⊙ S .然后用量角器作出72°的圆心角,则 为弧的扇形, r 就是所要画的展开图.]
幻灯展开例题:图中所示是一圆锥形的零件经过轴的剖面,它的腰长等于圆锥的母线长,底边长等于圆锥底面的直径,按图中标明的尺寸(单位mm),求:
(1)圆锥形零件的母线长 l ;
(2)锥角(即等腰三角形的顶角) ;
(3)零件的表面积.
图中给出等腰三角形的哪些尺寸?[安排中下生回答:高40,底边长34]哪位同学会计算圆锥形零件的母线长 l ?[安排一中等生上黑板,其余同学练习本上做][答案: mm]锥角 打算如何求?[安排一中等生回答:解Rt 求出 , 的对边 DB ,邻边 SD 已知∴选 的正切.]请同学们求出 .[安排一中等生上黑板,其余在练习本上做],[答案: ]
零件的表面积等于什么?[安排中下生回答:圆锥的侧面积加上底面圆面积.]计算圆锥侧面积所需条件已具备了吗?计算底面圆面积所需条件呢?[安排中下生回答, ]
请同学们把表面积求出来.[ ]
(四)总结、扩展
请同学们回顾一下,本堂课我们学了些什么知识?[可安排中下生相互补充完整:1.圆锥的特征;2.圆锥的形成及有关概念;3.圆锥的展示图;4.圆锥的轴截面。]
布置作业
教材P.191:练习1、2;P.193中5、6、7、8。
板书设计