已知数列{an}满足a1=1,an+1=2an+1(n∈N*)
(1)求数列{an}的通项公式;
(2)求数列{an}前n项和Sn.
答案
(1)∵an+1=2an+1,
∴an+1+1=2(an+1),
所以数列{an+1}是以a1+1=2为首项,以2为公比的等比数列,
∴an+1=2^n,
即an=2^n-1.
(2)∵an=2^n-1,
∴数列{an}前n项和Sn=a1+a2+a3+…+an
=(2-1)+(2^2-1)+(2^3-1)+…+(2^n-1)
=(2+2^2+2^3+…+2^n)-n
= [2^(1-2n)/1-2] -n
=2^(n+1)-n-2.
等比数列的通项公式:
an=a1qn-1,q≠0,n∈N*。